Applied Numerical Mathematics 10 (1992) 37-57 37
North-Holland

APNUM 298

Block-Cholesky for parallel processing

Margreet Louter-Nool
CWI, P.O. Box 4079, 1009 AB Amsterdam, Netherlands

Abstract

Louter-Nool, M., Block-Cholesky for parallel processing, Applied Numerical Mathematics 10 (1992) 37-57.
We concentrate on the Cholesky factorization of 4= LL', where A is a positive definite symmetric matrix
and L is a lower triangular matrix. A blocked algorithm based on Level 3 BLAS is discussed. When using
Level 3 BLAS kernels in a multiprocessing mode, one can parallelize within each kernel, or can obtain
parallelism by performing different matrix—matrix operations on different processors. We apply parallelism
over the blocks. We study the amount of parallelism and we discuss the data dependency graph. The
SCHEDULE package is used to obtain a portable scheduling of the tasks. Numerical results of our method
are presented and compared with the results for a block algorithm parallelized within the Level 3 BLAS
kernels.

Keywords. Cholesky factorization, block algorithms, parallelism, scheduling.

1. Introduction

We discuss the Cholesky factorization
A=LLT,
with A4 a positive definite symmetrix matrix and L a lower triangular matrix. The matrices A
and L are partitioned into submatrices, or blocks. The algorithm presented here is described in
terms of matrix—matrix operations on distinct blocks and we study parallelism over the blocks.
We consider the data dependency of the block operations and we discuss some aspects of
scheduling of tasks involved with block operations.

Since the execution time of algorithms on high performance computers does not merely
depend on the number of floating-point operations, we consider machine-dependent aspects
like the Megaflop rates attained for different blocksizes, the performance ratio for different
matrix—-matrix operations, and the influence of data movements on the performance. To obtain
an efficient and portable implementation we used calls to Level 3 BLAS [3] and for the
scheduling we made use of the SCHEDULE package of Hanson and Sorensen [12]. We present
some results for the Alliant FX /4, the Alliant FX /8, and the IBM 3090 /VF. Finally, we draw
some conclusions.

2. The Cholesky factorization

The Cholesky factorization is one of the most analyzed algorithms in numerical algebra
[6,10,11]. It is a straightforward algorithm and, since A is positive definite, pivoting is not

0168-9274 /92 /$05.00 © 1992 - Elsevier Science Publishers B.V. All rights reserved

38 M. Louter-Nool / Block-Cholesky for parallel processing

(-NB

NB

EK-)NB

NB (jNB
Fig. 1.

necessary to ensure or improve numerical stability. The general step for the Cholesky factoriza-
tion looks like:

FOR ...
FOR ...
FOR ...

a;=a;—l;a; (y=au/a.;)

and it depends on the position of the loop parameters i, j, and k, respectively, whether we are
dealing with row, column or submatrix Cholesky factorization [6,16,17]. All forms have the same
number of floating-point operations, indicating that the amount of arithmetic is exactly the
same for all variants, although the data access and the updating patterns are different.

How do we design an efficient algorithm which performs well on a large variety of machines?
Ortega analyzed all forms for vector [16] and parallel machines [17]. Column Cholesky
appeared to be favorite for machines with vector-processing capabilities. For parallelism only

cal memory systems with row or column wrapped interleaved storage are considered [17]. We

us on block-column Cholesky [5]. For convenience, we assume that the blocksize NB is a

»per divisor of matrix order n and

K= E (21)

The block factorization can be visualized as in Fig. 1. All elements of 4 are blockmatrices:
Ayj_ypj-1 Ay, and A, ., are symmetric block-matrices containing (j — 1) X (j — 1)
blocks, a single block, and (k —j) X (k —j) blocks, respectively. Assume the first (j — 1) X NB
columns, or the matrices L,;_,,;_y, L;;;-, and L; ., ,;_; to be known. In step j, we
compute the next block-column (a set of NB single columns) of L. By equating LLT and A, we
obtain the following two relations:

Ay=Ljyjoy L+ L L (2.2)

i’
Aj+l:K,)' =Lj+1:l<,1:j~1 ‘ij['i,l:j—l +Lj+1:|<‘j L}:‘] (23)
From the first equation (2.2) L j; can be calculated. The operations involved are:
(1) A symmetric rank-k update

AP —A;—L Lf,- (2.42)

Q=17

M. Louter-Nool / Block-Cholesky for parallel processing 39

(2) A Cholesky factorization on a single block
L < Cholesky(A&})). (2.4b)

The second equation (2.3) delivers L, ., ..

(3) A matrix-matrix product
AN e A

J+ 1k,

jrt — Lisari— 'L}",l:j—-l' (2.4c)
(4) Finally, we have to solve a triangular system

Lj+l:|<,j<—A(jlll:K,j.LJ;T‘ (24d)
If operations are only performed on single blocks and if, in addition, all components are

single blocks as well, then (2.4a) can be rewritten as
j—1
A <Ay -) L;-Lj (2.5a)
i=1
where L; .., has been subdivided into the single blocks L; (i=1,...,j—1). Analogously,
operation (2.4c) can be translated into

Jj—1
A(Ij)(——A[]— ZLI‘L’};, l=j+1,...,K. (Z'SC)
=1
The matrix—matrix products in (2.5a) and (2.5¢) are data-independent and can be carried out in

parallel. This approach, however, requires additional memory, since the temporary result
matrices

B}=Lj,.-LT,- and Cj,=L, L]

iis i=1,...,j—-1,1l=j+1,...,K

are generated. In the end, the matrices B} and Cj; have to be subtracted from A;; and A4,;,
respectively.

An alternative way to perform the jth step of the factorization is to translate (2.4a)—(2.4d)
into .

Al A =L LY =1, 1, (2.6a)
L;; « Cholesky(A"), (2.6b)
Al AT V=L LY, =1, = Lk, (2.6¢)
L,<Aj"-L;", I=j+1,..,K, (2.6d)

where A(,.)j denotes the original submatrix A;;. In this case, the symmetric rank-k update (2.6a)
and the matrix—-matrix multiplications of the i-loop of (2.6c) can no longer be executed
simultaneously, since each update requires data of the previous computed update. However, for
different values of [the matrix—matrix products, possibly followed by the solution of the
triangular system (2.6d), are data-independent. Summarizing, the computation of (2.42)-(2.44)
has been broken up into smaller units of computations. We will show that it is no longer
necessary to execute the units in the same order as described. In the next section, we present
the execution dependencies between them in order to specify a parallel computation.

40 M. Louter-Nool / Block-Cholesky for parallel processing
3. Presentation of the method

Throughout this paper we will use computational kernels for basic operations in linear
algebra. These kernels are termed the BLAS, for Basic Linear Algebra Subprograms. The
Level 2 BLAS [4] incorporates matrix-vector operations, and the Level 3 BLAS comprises
matrix—matrix kernels [3]. In (2.6a)-(2.6d) we have translated the original computation into
smaller units of computations. Each of these will be associated with its BLAS subroutine name.
The Level 3 BLAS used are:

_syrk for performing a symmetric rank-k update on the diagonal blocks,
_TrsM for solving a number of systems with the same triangular coefficient matrix,
_GemM for multiplying two matrices.

The fourth operation to perform is the Cholesky factorization, referred to as
_t for factorizing a diagonal block.

In this paper we use the term process or task rather than unit of computation.

A is partitioned into K X Kk blocks. Both 4 and the diagonal blocks are symmetric. From
(2.6a)—(2.6d) we derive the number of processes needed to compute the complete factorization
of A:

_LLT: K,
_SYRK: +K(k — 1),
_TRSM: ;KEK - 1;, (3-1)
_cemM: k(K — 1)(k — 2).
This implies that the total number of tasks will be
M= 1k(k + 1)(K +2). (3.2)

Sor the description of our algorithm, it is convenient to number the tasks. A list schedule L, of
1 tasks denoted by

L,={T,,T,.....T,} (3.3)

represents a certain order of the m tasks. The choice of ordering will determine the scheduling.
If we number the tasks on the matrices of the first column from 1 to x and those of the second
column (i.e., 2 operations/block) from Kk + 1 to k + 2(k — 1) and so on then we obtain an
ordering that corresponds to the column Cholesky. Analogously, a numbering along the rows
will result in a row Cholesky, and a submatrix Cholesky corresponds with a numbering starting
with the first updates succeeded by the second updates etcetera.

The aim of our investigations is to apply a simple scheduling strategy and to find an optimal
value for k, the partitioning parameter (2.1). To obtain a good speedup with a multitasked
code, we have to keep the processors concurrently active as much as possible and have to
minimize memory conflicts between processors. An execution of the tasks strictly in conformity
with one of our proposed numberings will not generate an optimal code. Many processes are
data-dependent and processors may be idle while several tasks ready to be executed are waiting
to be activated. Our algorithm for a fixed number of parallel processors, say p, will execute
tasks, even when their results are not needed at that time.

M. Louter-Nool / Block-Cholesky for parallel processing 41

The scheduling strategy.

(A) The only schedulable task to start with is the factorization of the first diagonal block. As
soon as this process has been completed, k — 1 tasks become schedulable, namely the
calls to _TRsM on the first column matrices A, J=2,...,k. Assume that p<x — 1,
then we continue with the next p schedulable tasks. For p > x — 1 only Kk — 1 processors
can be active and p — (k — 1) processors will still be idle.

(B) When a process has finished on processor P, then other tasks may become schedulable.
The next task on processor P, will be the first ready task in list L,,. The ordering of the
tasks is determined by the selected numbering. If no schedulable tasks are available then
processor P, has to wait until schedulable tasks are generated by tasks on other
Processors.

(C) Repeat (B) until all tasks have been completed.

It is easy to determine for each process which dependencies have to be satisfied and to
determine which processes depend on that specific process. Figure 2 shows the data depen-
dency graph for a matrix partitioned into 5 X 5 blocks. A node is specified by either an A or an
L denoting the computation of

Af: kth temporary update of submatrix A,; (k <j— 1),

L;;: the final update of submatrix A4,;.
Note that the dependency graph of a matrix partitioned into 4 X 4 blocks is a part of the graph
of Fig. 2, namely that graph spanned by the nodes Af.‘j and L;; with 1 <j <i<4. We remark
that the amount of parallelism decreases during the course of the factorization. At the end no
parallelism is left: the computation of Ls,, A%s, and Lss cannot be done simultaneously.

Assume that the computation costs only depend on the number of floating-point operations.
If we define

1 CU = the number of floating-point operations for a Cholesky factorization
of a block of order nB,

then we obtain the computational costs as listed in Table 1 for the different operations on
equally sized blocks of order NB. The value at the top right of a node in Fig. 2 stands for the
minimal execution time expressed in CUs on an unbounded number of processors to perform
the associated process and its preceding tasks. The solid line in Fig. 2 shows the critical
(minimal) path of 35 CU.

The speedup is defined by

Time used by 1 processor

- 3.4
P~ Time used by p processors (3-4)

and the efficiency by

S
Efficiency = —2 X 100%. (3.5)
p

42 M. Louter-Nool / Block-Cholesky for parallel processing

35

Fig. 2. The data dependency graph for the Cholesky factorization of a matrix partitioned into 5% 5 blocks on four
Processors.

From Fig. 2 and the values of Table 1 we may conclude that, for our example with k = 5, the
maximum speedup is

Time required on 1 processor 125 CU 357
" Time required for critical path 35 CU_ > (3.6)

max

M. Louter-Nool / Block-Cholesky for parallel processing

Table 1

Theoretical execution times expressed in CUs
Operation FLOPs CuU
_LLT ingd 4 oo 1
_SYRK NBY 4 - - 3
_TRSM NBY 4 - 3
_GEMM 2NBY v 6

assuming enough processors to be available. For the graph of Fig. 2 the maximum number of
processes which can be computed in parallel is 10, namely the first updates A4%,, A%, ..., AL
which cover the whole matrix except for the first column. Hence, on ten or more processors,
the efficiency cannot exceed 35.7%.

Let us return to the scheduling as described in this section. Suppose four processors are
available, and the tasks have been numbered corresponding to the column Cholesky. The
scheduling based on the CU distribution of Table 1 is shown in Fig. 3. In this case, 42 CU are
required, and the speedup is

125 CU

= =7
S, LU 2.98.
The efficiency of 74% is twice the efficiency obtained on ten processors. Another numbering of
the tasks might result in another speedup, and we notice that the speedup for this example is
not optimal. The critical path method (CP) considered as the most efficient heuristic method
for solving the scheduling problem in hand needs 39 CU for our 5 X 5 problem. The CP method
is based on initial execution time values 7T,. If these estimated initial values T; vary little from

!

the values obtained during execution then the CP method will give rise to an inefficient
execution [15].

At the beginning as well as at the end of the factorization process, operations cannot be
performed in parallel. To minimize the execution time of the initial and final phase, a smaller
value of the blocksize nB might be considered. Theoretically, on a fixed number of processors,
the performance increases with the number of blocks and the maximum speedup will be
reached for a blocksize of 1. We will show in the next section that machine characteristics will
play an important role in the performance in the choice of the blocksize.

4. A portable implementation based on SCHEDULE and BLAS

When implementing a parallel block algorithm that has to be efficient on a wide variety of
parallel machines one needs a portable implementation to define data dependencies and
parallel structures, and to coordinate the parallel execution. For this purpose, we used the
SCHEDULE package of Hanson and Sorensen [12]. In addition, the algorithm was imple-
mented in terms of calls to Level 3 BLAS. For the single diagonal blocks of order nB an
unblocked Level 2 BLAS implementation of the Cholesky factorization was used.

i

44 M. Louter-Nool / Block-Cholesky for parallel processing
B ////7 | T
0 T AA
- i 55
* _ L ss
b 35 EYAIEIEIRY
— ,\’\’\,\I\
o NN
ol o AN I
°r] A s
— v 2 2 7 2
1 NN
— /777 L 44 ESOSNNY
— o ’\I\’\’\j\‘
- R ’\’\’\"\’\
= NN N NN
~ - RRSANN
s \\ L] A s
— 43 2
N :
— LAY
NS
-0
L 15
L 10
= L .
- 22 NN
] o AANNN S
- PP AN
— 3 NN
L L 21 \\ L s
o AL 11

Fig. 3. Scheduling of the Cholesky factorization of a matrix partitioned into 5 X 5 blocks on four processors.

4.1. Machine dependencies

In the previous section we explained that the performance of the parallel block algorithm
depends on:

K: the partitioning parameter,

p: the number of processors,

L, the scheduling,

CU: the ratio of the execution times for the different tasks.

Theoretically, we could calculate the speedup for fixed values of x, p, L,, and some
well-defined CU-distribution. In practice, however, machine-dependent aspects influence the
CU-distribution. It is closely related to the BLAS implementation. The BLAS performance in
turn strongly depends on the data structure and the blocksize. Moreover, the influence of
possible reuse of the cache contents can hardly be expressed in terms of the above mentioned

M. Louter-Nool / Block-Cholesky for parallel processing 45

variables (cf. Gallivan et al. [9]). In the next section, we focus on the scheduling by SCHED-
ULE, which rather differs from the scheduling we proposed in Section 3.

4.2. The scheduling by SCHEDULE

The SCHEDULE package does not allow assigning priorities to tasks, which could be
desirable, for example, to reuse cache (if possible) or to rank time-consuming tasks above less
time-consuming tasks. This implies that the influence of a particular ordering cannot be
measured. In practice, even for small values of k, the scheduling on a fixed number of
processors turns out to be unique for each run. This can be explained by the execution times of
the tasks. For our problem we only distinguish four different execution times T ..o T-1esuo
T . .. and T . Most scheduling problems are dealing with a larger variation in execution
times which makes it casicr to predict the flow of execution. In Section 5.2 we present a few
examples of the scheduling by SCHEDULE.

5. Experiments

We will comment on three different implementations of the Cholesky factorization.

DLLTB
The algorithm as described in the previous sections will be referred to as pLirs. The way the
data is stored influences the performance. Our algorithm operates on single blocks. For that
rcason we explicitly partition the matrix A into blocks. This means that the matrix is stored
blockwise by means of a four-dimensional array
A[T:Ns, Tons, Lok, Tik].

The clement Ald, j, k, 1] refers to element (4, j) of block (k, [).

DTS

In this paper we also consider the performance of an “ordinary” Level 3 BLAS implementa-
tion to perform the Cholesky factorization. It can be compared with ppoTrr from LAPACK [1].
The matrix to factorize is stored in the traditional FORTRAN way, which means columnwise in
a two-dimensional array. The routine prir3 exploits parallelism within the BLAS kernels.
Opcrations are not performed on single blocks but on much larger block-matrices. Figure 4
illustrates how such blocks are composed.

—— 1

{4 %

N N 4

r7\ 7 \ A NI NA]

,,,,\ A AAY AT N

7 \,\\] ST NN I
AN NIV

Fig. 4. The combinations of blocks per step.

46 M. Louter-Nool / Block-Cholesky for parallel processing

DLLT

Both pLLTe and pLLT3 need a routine to compute the Cholesky factorization of a submatrix
of order NB. The unblocked implementation we used for this job is the routine pLLT based on
Level 2 BLAS. prut performs a column Cholesky factorization which is well suited for vector
machines (see George et al. [10]).

The machines used in the numerical experiments are an Alliant FX /4 with four processors
(at CWI), an Alliant FX /8 with eight processors (at Argonne) and an IBM 3090/ VF with six
processors. The IBM 3090/VF is located at the Amsterdam Academic Computer Centre
(SARA). In Section 4, we proposed to use BLAS to obtain high performances. On the Alliants,
all levels of BLAS are vendor-supported and these codes are more powerful than model
implementations written in portable FORTRAN. For the IBM vectorized codes are available
for pcemm and DTRsM, but neither of them has been parallelized. All experiments are carried
out in double precision.

5.1. Performances of BLAS for the Alliant FX /4 and FX /8

We consider both the single and multi-processor BLAS performance. We have experimented
with several blocksizes, among which 32, 48, 64, 80, 96. The results for single NB X NB blocks (cf.
Table 2) can be used to analyze the performance of pLLts, since the SCHEDULE tasks are
single processor tasks each. Figure 5 shows the BLAS performance on four (FX /4) and eight
(FX/8) processors. For each step j, we measured the performance of the operations (2.4a),
(2.4¢), and (2.4d), denoted by psyrRk, DGEMM, and DTRsM, respectively. Figure 5(b) illustrates
that the BLAS performance on the Alliant FX /8 strongly depends on j. Presently, a better
BLAS release is available—installed on the FX /4, but not yet on the FX /8—which does not
suffer from such dependencies (see also Jalby and Meyer [13]). In Louter-Nool and Winter [14]
the difference in performance between both BLAS releases on the FX /4 is illustrated. For the
single processor case, an improved version of DSYRK is used based on the Alliant intrinsic
function porpropuct. This alternative code is not well suited for pLLT3, since n > NB. For that
case, it 1s better to use the original vendor-provided psYRK implementation.

5.2. Graphic output by SCHEDULE

The use of SCHEDULE has some nice properties. The package is able to produce an output
file that records the units of computation as executed. A graphic program of a SUN worksta-

Table 2
Performances of Alliant BLAS 3 kernels on a single processor

Mflops on Alliant FX /4, p =1 Mflops on Alliant FX/8, p =1

NB=32 n~NB=48 NB=64 NB=80 n~NB=96 NB=32 Ng=48 n~NB=64 NB=80 n~B=0906
DGEMM 5.2 5.1 5.3 52 5.1 42 43 4.7 4.6 4.9
DTRSM 3.0 35 38 4.0 4.1 0.7 1.0 1.2 1.3 1.5
DSYRK 0.9 1.3 1.5 1.8 1.9 1.7 2.5 3.5 4.1 4.6

(psyrx) (2.5) (2.6) @.1n 2.7 2.4)

M. Louter-Nool / Block-Cholesky for parallel processing 47

30
BLAS module: %,
oxmn DGEMM (a) R v P
*.%.%.% DSYRK * ok
a-a-a-4 DTRSM wow
M ’
fzo_ ¥R x XX XX
XXX R KR KKK KKK KKK 1 x"‘~x_.
0o %
| TSN N SRSV SVNYRTIVON P 10 * x
s
HAE A KK K Rk 0| Aaaasasaas-aaaaas
f T I I I I
0 5 10 15 0 5 10 15
j— Jj=

nance Level 3 BLAS on Alliant FX /4, p =4, N8 = 64 (a) and on Alliant FX /8, p = 8, N = 64 (b).

‘pret this output. It is possible to construct the dependency graph and to show the
juence as it was run on a parallel machine. We used these output files to display
"execution, analogously to Fig. 3.
based on Alliant psYrk) and 7 (DOTPRODUCT DSYRK) are both concerned with the
storization of a matrix divided into 5 X 5 blocks on an Alliant FX /4. We observe
execution time is reduced from 3.78 seconds to 2.07 seconds, a gain of 55% due to
| psyrk implementation. In the following we will only consider results of pLLTB
d psyrk. From Fig. 7, it is not clear which tasks are waiting for each other. Let us
: allocation of tasks. L,;, A3,, and L, can be executed on the same processor, for
yrocessor P,. Concurrently, A3,;, Ls;, and A2 can be run on processor P;. From
endency graph of Fig. 2 we know that A42,, Ls,, A, and L., cannot be executed
‘hese jobs can run on P,. In that case, we obtain a picture similar to Fig. 3 with
. tasks. By this rearrangement of tasks no holes are saved, because all of them arise
'pendency. It can easily be concluded now, that the sooner A§3 starts the soonei
mputation ends. It turns out that the update of the diagonal blocks is very crucial
ie. If the computation of such blocks and their preceding tasks are performed as
ble then less holes will occur.
ition of tasks as suggested above provides that succeeding tasks operate on the
r at least needs data calculated in its preceding task. A possibility to force reuse of
oncatenate tasks. For the computation of L, (I=j,...,k) from the original block
re required (see formulas (2.6a)—(2.6d)). Assume that these steps are performed in
¢ §);. The execution of such a supertask cannot begin before ;. and L, ; | have
1. Moreover, the execution time of the supertasks increases with the value of j.
most expensive tasks like S, _, ., S, ., and S, are strongly data-dependent
un with any other job concurrently. Summarizing, the application of supertasks will
legree of parallelism considerably, and it is not expected that the reuse of data will
this loss.
llustrates the scheduling on the IBM 3090 /VF on six processors with k = 7. The
>xecution time for the BLAS operations is more obvious; the rank-k update is the

48 M. Louter-Nool / Block-Cholesky for parallel processing

7.28952 —— —our—— Lss
oevak | Ads
[prasm | L g4
i Lu
3
sk | A
peYRK 35 osvak | Adg
oeemm | A3,
oM | L 43 omsm | L sy
B ot | Las
Time B 5
in - osvk | A5 psvyRk | A %4
seconds
- 2
peemmd | A
osvak | A% 4
ceemn | A% oeewm | AZs
o | Als orem | Ly omsm | Lgp oM | L3y
our |Lop peemM | A %3 peemm | A ‘1;2
A 1
DGEMM 54
L Al
DGEMM 52
— psvax | Alg) osvax | Ady osvak | Als
veemm | A 3o
A 1
DGEMM 43
omsm | L3 orrsM | L 41 omsm | Loy omasm | L 51
350014 | | I ‘ DLILT Ly
P1 P2 P3 Pa

Fig. 6. Scheduling of the Cholesky factorization by SCHEDULE of a matrix of order 400 partitioned into 5% 5 blocks
for the Alliant FX /4 on four processors.

M. Louter-Nool / Block-Cholesky for parallel processing 49
5.60135 ——
our | Lss
osvax | Ads
orrsM | L g4
3
L ocemm | A3y our | Lag osvrk | A §5
- A 3
DSYRK a4
| omsm | L33
B orrsm | L 43
psyak | A %5 ocemm | A %3 2
Time [~ poemm | A5y
N our | L33
seconds
psvrk | A %3 psvrc | A %,4 ocemm | A %3 oreS L
M 52
orsM | L 49 osvak | A ; s oM | L3 e | A %3
— DLLT L 22
1
ocemm | Asp pcemm | A };3 ocemm | A %4 psyrk | A :l; 3
1
psvrk | A4 peemm | A %2 osvak | A %2 ocemm | A }42
B orsm | L omsM | L orsm | L
oTRSM L " 31 51 41
our | Lqq
3.53585 ——
| | I
P1 P2 P3 Pa

Fig. 7. Scheduling of the Cholesky factorization by SCHEDULE of a matrix of order 400 partitioned into 5X 5 blocks
on four processors with improved psyrRk based on intrinsic function porpropuct for an Alliant FX /4 on four
Processors.

50

8.44983 —

M. Louter-Nool / Block-Cholesky for parallel processing

- Ly
-
= =
— DSYRK Ags
=
B ot |Lgq
- A3
Time = DSYRK | A 44
in |
seconds |-
| oaemm |A §4
= omsm |L 53
= psvAc |A %7
— A 1
DaemM A g4
b=
: peemm |A %3
=
= 1
~ paemM | A 35
= Al
DSYRK 22
7.70047 —_ |
P1

orrsm | L 76
psvAk (A %7
Lss
osvk | A%
oeemm |A g
orsm | L gq
A 3
PEYRCIATT) ek |A 2
ocemm | A2,
A 2
A 2 DSYRK 55
DGEMM 75
ooemm |AZg ,
osyrk |A 43
ooemm A2
DTRSM L 62
otrsm | L 35 1
1 DGEMM A 43
DGEMM A 75
1 A 1
peemm [Agy | sk [A33
Al 1
DSYRK 1 A55 | paemm |A 52
DTRSM L 51
DTRSM i 21
DL 11 |
P2 P3

psvax |AS;

coar Les

[oommJ43%

Lgs
A 4 psvak A §6
3
L,
3 beemm |AZ
ocemm | A 3¢ 64
ocemm |A2s 43
DGE
peemv | Ads il
oM | L73 [omem | L
orsM | L 43 63
ocemm |A%s | ocemm [AZ,
2
oeemm |A 43 5 L33
omsM | L 47 5
) ocemm | A 53
psvk |A &g
ocemm |AZ;
osvrx | AL,
oaemm |A %3 otrem | L 55
ocemm |Ady
1 DLLT L 22
oGEmMM | A 54 !
ooemm [A gy | DOEMM A7
Ag 1
osyrk | Ags | oeemm [Ags
orsM | Ly [omem | L3
| |
P4 PS5

osvre |Agg

paemm | A ‘7‘5

otrsM | L 54

osvak |AZg

osvak |A %4

paemm |A %5

paemm | A };2

peemm | A 76

omrsm | L9

osvak | A Lg

omrsm | L 4

otesm | L 71

[
P6

Fig. 8. Scheduling of the Cholesky factorization by SCHEDULE of a matrix of order 672 partitioned into 7 X 7 blocks
for the IBM 3090 /VF on six processors.

- o o o oo T N

Fig. ¢

mosl
Is 1«
proc
denc
unde

T
neec
6-38,
sinck
proc
and

5.3..

M. Louter-Nool / Block-Cholesky for parallel processing 51

(a)

o e oo oo W»n
o E Ao og

K — K — K ~—»

Fig. 9. Speedup for 2-4 processors on Alliant FX /4, nB = 64 (a). Speedup for 2-8 processors on Alliant FX/8,
NB = 32 (b) and nB = 96 (c).

most expensive operation, since an optimal vendor-supported implementation of routine DSYRK
is not available. Furthermore, we remark that not until three jobs have been completed on
processor P, other processors start to execute. This does not correspond to the data depen-
dency graph; the jobs L, i =2,...,7, become executable simultaneously. We do not precisely
understand why this only happens at the start of the execution.

The values at the top right of each node in Fig. 2 represent the theoretical time, which is
needed to compute the corresponding task, measured from the start of execution. From Figs.
6-8, we conclude that a good estimate for the expected computational time cannot be made,
since the length of the blocks vary too much. Finally we remark that the trace facility,
producing output for pictures like Figs. 6—8 was only used to analyze the course of execution
and it was not used in timing programs, since it acts upon the execution time.

5.3. Performances of Cholesky factorizations for the Alliant FX /4 and FX /8

Unfortunately, the number of active tasks, that can be handled by SCHEDULE [12], is
restricted to 1000. From the number of tasks m given by formula (3.2), we derive that Kk,
presenting a partitioning into x X K blocks, may not exceed 17. The number of jobs is of order
k3, which implies that an extension of the array lengths of SCHEDULE hardly conduces to a
larger x value.

Figure 9(a) displays the speedup (cf. formula (3.4)) obtained for p =2, 3, 4 processors on an
Alliant FX /4. The blocksize for this experiment is 64, and x varies from 1 up to 17. In Figs.
9(b)-(c), the speedup for the eight-processor Alliant FX /8 is shown for NB =32 and NB = 96,
respectively. For the theoretical case, the speedup is independent of the blocksize. In practice,
however, the speedup will increase when the blocksize increases, since the overhead of
scheduling, such as the creation of the data dependency graph, will proportionally decline to
the total computation time. Recall that the overhead of scheduling is minimal for one
processor, since processes never become data-dependent.

In Fig. 10 the Mflops obtained for the Alliant FX /4 for pLit (Level 2 BLAS), pLLt3 (Level 3
BLAS) and prits (SCHEDULE combined with Level 3 BLAS) are listed. The speed of the
unblocked pLLT is, of course, independent of the number of blocks, but it does depend on the

52 M. Louter-Nool / Block-Cholesky for parallel processing

20
DLLT
ia2k Biths
aa
M15 — oo

20 5 10 15 20 5 10 15 20
K — K — K —
Fig. 10. Performance of pLLT, pLLt3, DLLTB on Alliant FX /4, p =4, nB = 32 (a), nB = 64 (b), and NB = 96 ().

matrix order. This declares why its shape differs in each picture. The maximum performance of
pLLT is reached for n = 256. We remark that a call to pLLT3 with Kk = 1 corresponds to a single
call to pLLt. The same is true for pLLTe. However, in that case, pLLT will be performed on a
single processor.

In Fig. 11(a), presenting the results for both pLLT and pLLT3 on the Alliant FX /4, it can be
seen that for large n a blocked implementation is to be preferred to an unblocked one (see
Gallivan et al. [8] and Dayde and Duff [2]). We expect that, also for small matrices, pLLT3 in
combination with an improved psyrk will give higher performance than pLLT based on Level 2
BLAS. Figure 11(b) gives the results for pLLte for the Alliant FX /4. Again a blocksize of 32
gives rise to the highest efficiency. The question arises whether the speed is completely
determined by K, as in the theoretical case, or by the blocksize NB as well. Figure 12 illustrates
that on one and two processors a blocksize of 64 results in higher performances than a
blocksize of 48, despite its smaller k value.

The speed of pLLT3 on the Alliant FX /8 (Fig. 13(a)) is very disappointing, probably due to
the low performance of the BLAS routine ptrsm (cf. Fig. 5(b)). Figure 13(b) presents the
performance of pLLTB on the Alliant FX /8 based on exactly the same BLAS implementation as

20 . 20
Blocl?lﬁsrr (a) (b) - "
EE [5% e %
% M15
f f
_ o iﬁ“
ST P
o s 5 A
A e
0 i I — O"f! I I T I
0 400 800 1200 1600 0 400 800 1200 1600

n— n—

Fig. 11. Performance of pLLT and pLLT3 (a) and pLits (b) on Alliant FX/4, p=4.

M. Louter-Nool / Block-Cholesky for parallel processing

Blocksize; :
k.

‘A
[olnlele) %g
X

A-A-A

XXX
.

[I [
400 800 1200

n—

Fig. 12. Performance of pbLLTs on Alliant FX /4, p=1(a) and p = 2 (b).

1600

Fig. 13. Performance of prur and prer3 (a) and pLirs (b) on Alliant FX /8, p=8.

used for pLLT3. The large difference in performance between pLLT3 and DLLTB is also caused
by the different data structure. To illustrate this we have experimented with pLLTB, where the

800

n—

1200

1600

0 400 800 1200 1600
n—)
30
M ol .x"‘lx “
£ 20
1 ei‘-jé
0 *xf@.’"."
e
P 10 ek
s #*45_"
£
’ (b)
0 I I I T
0 400 800 1200 1600
n—

matrix to be factorized was stored blockwise (four-dimensional) as well as in the traditional
FORTRAN way (two-dimensional). The results for the Alliant FX /4, including the number of
page faults and swaps and the elapsed time, are listed in Table 3.

For all experiments we discussed up till now, the matrix order n was a multiple of the
blocksize nB. This yields that all blocks are of order ns. If not, then the submatrices of the last

Table 3
Alliant FX /4, influence of data structure
Number of NB Mflops Number of Elapsed
blocks page faults and swaps time
pLLTB (4-dim) 17 96 17.5 31 pf+ 0w 3:03
pLLTB (2-dim) 17 96 15.1 1707 pf+ 2w 18:38
pLLT3 (2-dim) 17 96 12.8 553 pf+ 1w 19:37

54 M. Louter-Nool / Block-Cholesky for parallel processing

16 - Blocksizes :
L e]
— 64
M
f 14 —
1
o
p 12—
s
10—
I [[[[

n—>

Fig. 14. Performance of pLLtB with unequally sized blocks on Alliant FX /4.

row kK are of dimension n —(k — 1) X NB by NB, whereas the diagonal block is of order
n—(x — 1) X NB. As a consequence, the execution time of operations on such blocks will differ
from the time required for square blocks of order nB. Figure 14 displays the performance for
matrices of order n = 300, 304,...,800 and for nB = 32 and NB = 64. The dotted lines connect
the points with » =k X NB and kK a positive integer. We see that for nB =32 the highest
performance is obtained for such points. For NB = 64 the opposite is true; subroutine DLLTB
performs even better in case of unequally sized blocks.

5.4. Performances of Cholesky factorizations for the IBM 3090 / VF

For the IBM 3090 /VF optimized Level 2 and 3 BLAS implementations are available only
for a single processor. Unfortunately, only an older version of SCHEDULE [7] is available. It
turns out that only the results for k < 15 are correct. We do not go into further detail in this
paper. For the behaviour of pLLTB on a single processor we refer to Fig. 15(a). In Figs.
15(b)~(c) the speedup for the IBM 3090/ VF is given. For small values of k the speedup is less

80 -
Blocl%lzes :
4 %k %k
284496 aaaat S
Me60 — Aad
A)
f A'A
.A- e
! 40 A.-A e
fo) D
' ‘
p :
s 20 — ** u
g P
A (a)
0

[I I |
0 400 800 1200 1600

n—»

Fig. 15. Performance of pLiTs on IBM 3090/VP, p =1 (a). Speedup for 2-6 processors on IBM 3090/VF, np =32
(b) and nB = 96 (c).

M. Louter-Nool / Block-Cholesky for parallel processing 55
400 . 400
Blocksiges : (a) 27 (b)
A-AAA 4 3‘.x
M 300520268 M 300] ~
f cae-e 96 e f
o APA
. 1 200 gmﬂ
2 ° -
#
p o
100 —| o
s £
2
T B T T I T
0 400 800 1200 1600 0 400 800 1200 1600
n— n—

Fig. 16. Performance of bLits, p =4 (a) and p = 6 (b) processors IBM 3090 /VF.

than 1, probably caused by the “slow” communication between the processors. The more
processors involved in the process the lower the speedup for small values of k. According to
Fig. 9 the speedup increases with the blocksize.

In Fig. 16 we give the results of pLLTB on four and six processors, respectively. We observe
that the performance strongly depends on the blocksize, whereas for the Alliant FX /4 (cf. Fig.
11(b)) and the Alliant FX/8 (cf. Fig. 13(b)) the value of k mainly influences the speed.
Especially the timings in Fig. 16(a) point to a slow communication between the processors in
proportion to the IBM BLAS performance.

6. Conclusions and remarks

We conclude that parallelism over the blocks is a useful way to achieve high efficiency. In
this paper we focussed on the Cholesky factorization, but our technique can also be applied to
other problems in linear algebra. The use of the SCHEDULE package helps to introduce
parallelism in a transportable way. For the machines on which we ran our code, i.e., the Alliant
FX /4, the Alliant FX /8, and the IBM 3090 /VF, high performances are obtained. On the
Alliant machines higher Mflop rates are achieved for our code which applies parallelism over
the kernels than for codes exploiting parallelism within the BLAS kernels. Moreover, the
amount of data traffic has been reduced; for each processor at most three submatrices of order
NB are needed at a time. This happens in case of a _GeEMM operation, other operations need
less data. If these submatrices are explicitly stored blockwise, then for a suitable blocksize data
can be kept in cache. For pLLT2 and pLLT3 the situation is different. Here, the data needed per
operation is not bounded by the blocksize. The data management can only be organized within
a BLAS kernel and it is hoped that this is well done by the manufacturer (cf. Fig. 5). One
important side effect on the different data access pattern we would like to mention here. Not
only was the CPU time for pLLTB less than for pLLT (Level 2 BLAS) and pLit3 (Level 3 BLAS),
but also the wall clock time was much shorter.

Nevertheless, the performance of pLLTs based on SCHEDULE in combination with tuned
BLAS can still be increased: firstly, when a more efficient BLAS particularly tuned for a single

56 M. Louter-Nool / Block-Cholesky for parallel processing

processor can be used, and secondly, when a better scheduling of the‘tasks can be applied. A
partitioning into more than 17 X 17 blocks must be possible. We believe ‘that the :amount‘of
parallelism is potentially high enough to experiment with other computation orderings which
may result in a higher performance. o

To achieve high performance for algorithms based on parallelism over the kernels, optimized
BLAS for a single processor is needed, the so-called nonparallel BLAS. The reason for this is
that a highly tuned parallelized BLAS implementation will not always perform optlmally on a
single processor. Nowadays, it is not always clear whether a given BLAS version has been
parallelized or not. For the machines discussed in this paper either a parallel or a nonparallel
BLAS version is available. Therefore we suggest to distinguish between parallel and nonparal-
lel BLAS implementations. We believe that both versions should be accessible for exploiting
parallelism over and within the BLAS kernels.

Acknowledgement

The author would like to thank Dik T. Winter for executing the code on the IBM 3090 /VF
and for rectifying the SCHEDULE version on that machine.

References

[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammerling, A.
McKenney and D.C. Sorenson, LAPACK: a portable linear algebra library for high-performance computers,
University of Tennessee, CS-90-105 (1990).

[2] M.J. Dayde and LS. Duff, Use of parallel Level 3 BLAS in LU factorization on three vector multiprocessors;
the Alliant FX/80, the CRAY-2, and the IBM 3090 VF, in: Proceedings of the 1990 ACM International
Conference on Supercomputing, Amsterdam (1990).

[3] J.J. Dongarra, J. Du Croz, 1. Duff and S. Hammerling, A set of level 3 basic linear algebra subprograms, ACM
Trans. Math. Software 16 (1) (1990) 1-17.

[4] J.J. Dongarra, J. Du Croz, S. Hammerling, and R.J. Hanson, An extended set of Fortran basic linear algebra
subprograms, ACM Trans. Math. Software 14 (1) (1988) 1-32.

[5] J.J. Dongarra, LS. Duff, D.C. Sorensen and H.A. van der Vorst, Solving Linear Systems on Vector and Shared
Memory Computers (SIAM, Philadelphia, PA, 1991).

[6] J.J. Dongarra, F.G. Gustavson and A. Karp, Implementing linear algebra algorithms for dense matrices on a
vector pipeline machine, SIAM Rev. 26 (1984) 91-112.

{7] J.J. Dongarra and D.C. Sorensen, Schedule: tools for developing and analyzing parallel Fortran programs,
Argonne National Laboratory Report, ANL-MCS-TM-86 (1986).

[8] K. Gallivan, W. Jalby and U. Meier, The use of BLAS3 in linear algebra on a parallel processor with a
hierarchical memory. Timely communications, SIAM J. Sci. Statist. Comput. 8 (1987) 1079-1084.

[9] K. Gallivan, W. Jalby, U. Meier and A. Sameh, Impact of hierarchical memory systems on linear algebra
algorithm design, Internat. J. Supercomput. Appl. 2 (1988) 12-48.

[10] A. George, M.T. Heath and L. Liu, Parallel Cholesky factorization on a shared-memory multiprocessor, Linear
Algebra Appl. 77 (1986) 165-187.

[11] G.H. Golub and C.F. Van Loan, Matrix Computations (The Johns Hopkins Press, Baltimore, MD, 2nd ed.,
1989).

[12] F.B. Hanson and D.C. Sorensen, The SCHEDULE parallel programming package with recycling job queues
and iterated dependency graphs, Argonne National Laboratory Report, ANL-MCS-P22-0189 (1989).

M. Louter-Nool / Block-Cholesky for parallel processing 57

[13] W. Jalby and U. Meier, Optimizing matrix operations on a parallel multiprocessor with a hierarchical memory
system, in: Proceedings of the 1986 International Conference on Parallel Processing, St. Charles (1986).

[14] M. Louter-Nool and D.T. Winter, Benchmark of the initial release of the LAPACK library, Note NM-N8903 +
supplement, CWI, Amsterdam (1989).

[15] E. Luque, A. Ripoll, P. Hernandez and T. Margalef, Impact of task duplication on static-scheduling perfor-
mance in multiprocessor systems with variable execution-time tasks, in: Proceedings of the 1990 ACM Interna-
tional Conference on Supercomputing, Amsterdam (1990).

[16] J.M. Ortega, The ijk forms of factorization methods I. Vector computers, Parallel Comput. 7 (1988) 135-147.

[17] J.M. Ortega and C.H. Romine, The ijk forms of factorization methods II. Parallel systems, Parallel Comput. 7
(1988) 149-162.

